Int. J. Heat Mass Transfer. Vol. 18, pp. 1473-1479. Pergamon Press 1975. Printed in Great Britain

NATURAL CONVECTION ABOVE A LINE HEAT SOURCE:
HIGHER-ORDER EFFECTS AND STABILITY

C. A. HIEBER
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, U.S.A.

and

E. J. NASH
Department of Mechanical and Industrial Engineering, Clarkson College of Technology,
Potsdam, NY 13676, US.A.

(Received 21 February 1975)

Abstract—The natural-convection plume above a horizontal line heat source is analyzed in terms of

higher-order boundary-layer theory. A stability analysis of the resulting base flow is then performed by

means of a systematic expansion for the disturbance field. Comparison of the theory with existing
experimental results is found to be inconclusive.

NOMENCLATURE

a, radius of source;
by,  numerical constant appearing in (2.1)-(2.2);
c, = Qla;

g, gravitational acceleration
(directed along negative x-axis);
G, = (x/A)35 = Udjv = 1/g;

Gr, Grashof number of heat source,
= gB(T,— T,,)a>v%;

k, thermal conductivity of fluid;

o, strength of heat source [W/m];

r, radial coordinate measured from center of
source;

t, time;

T, temperature;

T,, temperature of source;

T,, ambient fluid temperature;

u, x-component of velocity;

U, characteristic vertical velocity in plume,

= (v/A)(x/2)'13;

v, y-component of velocity;

X, vertical coordinate measured from center of
source;

¥, horizontal coordinate measured from center
of source.

Greek symbols

o, = §(dA/dx);

B, coefficient of thermal expansion;

” = Q(dat, /dQ);

0, characteristic thickness of plume,
= A(x/A)?3;

AT, characteristic temperature difference across
plume, = AT(A/x)¥*;

AT,  =Q/k;
&  =0/x=@/x)"%
g, vorticity;

n, similarity variable, = y/§;
0, defined in (3.1);

4, = (/g BAT))';
A, defined in (3.1);

i, angular polar coordinate measured from
positive x-axis;

v, kinematic viscosity;

o, Prandtl number;

¢, defined in (3.1);

¥, streamfunction;

o, frequency of disturbance;

Q, = wd/U.

1. INTRODUCTION
THE CLASSIC problem of laminar, natural-convection
flow above a horizontal line heat source has received
considerable attention in recent years ([1]-{7]) and
has also been the “source” of some controversy.

In this paper, the zeroth-order plume structure of
earlier investigations is extended (Section 2) to include:
(i) the first-order correction arising from an interaction
between the plume and the irrotational flow outside;
(ii) the second-order correction (determinate to within
a multiplicative constant) associated with a virtual dis-
placement of the heat source. The stability of the
laminar flow is then investigated (Section 3) by means
of a systematic expansion which enables incorporating
the effects of (i) above, together with other comparable
effects which have been omitted in previous investi-
gations. Discussion and comparison with earlier work
is given in Section 4.

2. BOUNDARY-LAYER EXPANSION
In a manner completely analogous to that in [8],
it can be shown that the leading-order terms for the
streamfunction and temperature in the region
y=00), x>O0()
are given by

W = US{Fo(n)+eF () +&>*b, ®,(n) + O(e?)} (2.1)
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T = T +AT{Ho{n) +eH1(n)
+&%3b, @, (M + 0%} (2.2)

where the governing equations for F, and H, are
given by

F§ +3FoF§~4Fy Fy = —Hy
HE)‘XL%O’FOHQ =0
Fp(0) = 0 = F(0) = Fop(0), e

* 1
F; =
‘L oHody 20)

~

(23)

and F, and H, are governed by:*
Fi'+3FoF{ +4FoF; = —H,
"+2aF H| +$0F H, = —3aF H,
Fi(0) = 0= F{(0) = H}(0) = H,(0),
‘y(oc) = kg

(2.4)

where

2
Ay = Folco), k= %cot—;-. (2.5)

In additton,
O, = $Fo—3F,, ©;=4%nHo+3Hs. (26)

That is, Fy and H, are driven by the integral con-
dition in {2.3), which is a non-dimensional represen-
tation of the fact that the heat dissipated by the line
source gets convected entirely by the plume. On the
other hand, F, and H, arise from the inhomogeneous
condition in (2.4) which represents a matching with
the leading-order vertical velocity component of the
irrotational flow outside, described by

35 sin #(m —
\P~A0v<f> S_:}_(3 H)
SNy

; ,0<u<2n, r>00). (27
This latter result, in turn, is driven by the influx velocity
associated with F,. Lastly, following Stewartson [9],
@, and O, form the leading eigenfunction associated
with the present boundary-layer expansion and can be
interpreted physically as representing an apparent shift
in the location of the heat source (to x = b, 4: see
Section 4) as seen by the plume region.

Numerical integration of the above for ¢ = 0-70 gives
the following values:
Fu(0) = 093273, Hy(0) = 0-49654,

Fo(o0) = 221121
1(0) = 0:09969, H,(0) = —0-25111

Fi{n) ~xkAgn—038089 as 5 —co.

In particular, unlike the isothermal vertical-plate
case, H, is non-zero. Indeed, this is necessary since the
global energy-rate balance requires that

§. (FoH+F{Ho)dn =0, (2.9)
JO
which can be shown to be automatically satisfied by
the solution of (2.4).

*It has been brought to the authors’ attention by H.
Shaukatullah of Cornell University that the problem for
Fy and H, has recently been solved by N. Riley, Z. Angew.
Math. Phys. 25, 817-828 (1974).
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3. STABILITY ANALYSIS

Following a standard procedure in linear stability
theory (see Lin [10]), we superimpose upon the above
“base” flow an arbitrarily small disturbance of the form:
P = Udp(ye™@ -0 pg¢. 11
T= AT@(n}e‘"‘"‘)‘“"—}»c.c.} @b
where “c.c.” denotes “complex conjugate” and ¢, 8 and
A are complex whereas the frequency, o, is assumed
to be real. Since the base flow is known in terms of
an expansion in &, it is appropriate to express the

disturbance quantities in a similar manner, namely:

¢ = ¢1{n)+edaln)+...

6 = 8,(n)+eb(m) + ...
A= A(x)+eA(x)+...

(3.2)

whereas « will be assumed given (ie. consideration is
being given to the response of the steady laminar flow
to perturbations of various prescribed frequency).
Additional quantities which will be employed below
are the non-dimensional frequency, complex wave-
number and complex wavespeed, given respectively by:

Sw
=—, 33
a=—. (3.3)
A= =0+ ey +..., (3.4)
dx
C§;=Cl+g(’2+.... (3.5)

The vorticity and energy equations, linearized in
terms of disturbance quantities, are given by:

§§+aﬂ+ﬁi€+55£+5§§
at ox éx dy Oy
PN ot > (3.6)
= V(};}z%‘@)C‘gﬁ‘é}‘:
£+ﬁ§i+a@+5£+ﬁ€z\
ot 0x Ox dy dy | 37
=X<?i fi)f
o &}!2+@x2

where the bar denotes the base-flow quantities of
Section 2. In particular,
v

d=——=U(py+e¢r+..)e"" " +cc.

o (3.8)

i

[l

oy
ox

1

U{—io; ¢y +e(Eng) —2,— ia2¢>1
—iy )+ ...} e (39)

U
= x {1 —@1) + iy ne) — %y ) + 20026y

+afpr—%iyp—¢s)+...} A pce (3.10)

dd]
=Q—
V=240

where (3.11)
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arises from da,/0x and the property that «; depends
only upon , being the eigenvalue of the inviscid
problem [defined by equations (3.13) and (3.18) below];
ie.

doy  day 6Q_doc110 Y

ox  dQ ox

Q being proportional to x!/* for fixed w.

Carrying out the operations in (3.6) and ordering
terms in powers of ¢ results in the following equations
for the leading and next-order groupings {of order
U? ¢/6% and eU? ¢/52, respectively}:

L(¢,) = ioy (Fo—cy)(@] —af d1)
—i Fg'gp =0

(3.12)

(3.13)
and
Ugy)=F 1+, %, (3.14)
where
F1=¢"—2idi+ate+6,
—ia Fy(p]—addy) +io F{'¢,
—$ainFod)+30i Fod;+30,yFo 1 +3Fo )

+4¢1 Fg—3aiFo 1 +3Fo 97 (3.15)
+3Fg'¢1 +ci(Gaingy —tal b, — a1 70,),
Fy= —2iaic, ¢, +3inl Fyo,
—iFod1+iFg'd,  (3.16)
and, from the leading terms in (3.7),
0, = Hop1(Fo—cy) (3.17)

Appropriate conditions on the above are that the
disturbances vanish at the edge of the plume and that @
be asymmetric with respect to the centerline, this mode
having been found to be less stable than the symmetric
case (see Pera and Gebhart [5]). Hence,

¢j(0) = 0= ¢,(c0), all . (3.18)
Since the homogeneous problem for ¢, is identical
to that for ¢, it is required that

J (Fi14+o,F)rdn=0 (3.19)

0
where y is a non-trivial solution of the adjoint homo-
geneous problem:

(Fo—c)(y' —aix)+2F51 =0
£(0) = 0 = y(w), } (320

Hence, the procedure for determining «, and «, is
as follows. For a given Q, equations (3.13) and (3.18)
are solved for oy and ¢,(y) [note: ¢; = Q/a,]. With
oy known, y is determined from (3.20). In addition,
¢7’ and ¢7” are obtained by successive differentiation
of (3.13) whereas 8, is similarly derived from (3.17).
Lastly, y is obtained from knowing a; (Q2) at neighboring
values of Q, namely,

- %1(@+40) —4,@—AQ)
v 200

where AQhas been taken to be 0-02 in the results below.
Hence, with y, F; and F, known, «, is obtained from
(3.19); ie.

oy = —J ledW/J\O Fyxdn. (322
0

(3.21)
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Again limiting attention to ¢ = 0-70, resulting values
of a; and a, at various Q are shown in Table 1. Based
upon these values, the neutral-stability and amplifi-
cation contours can be constructed. These are shown
later in Section 4.

Table 1. Values of ay, o, and —ot5;/00;; vs Q

Q oy x —oafay
0-02 0-0609 — 0-0580i —0033+0:779i 1342
0-04 0-1150—-0-0884i —0-078 +0-813i 9-20
0-06 0-1693 — 0-1069i —0123 +0-842i 7-88
008 02213 -0-1158i —0-165+0-856i 7-40
010 02693 -0-1181i — 0198 + 0-860i 7-26
012 0-3130—0-1162i —0-223+4+0861i 7-41
014 03529 —0-1120i —0-242 +0-863i 770
016 0-3897 —0-1064i —0-258 + 0-866i 814
018 0-4238 — 0-1000i —0-271 +0-870i 870
020 0-4558 —0-0933i —0-2824+0-875i 9-38
024 0-5147—-0-0794i —0-300+0-888i 11-19
028 0-5685—0-0657i —0-316 +0-904i 1375
032 0-6187 —0-0525i —0-329 +0:925i 17:62

4. DISCUSSION

A comparison of the present numerical results
(6 =070) for F, and H, indicates agreement with
those of Fujii et al. [6] and also with the centerline
value of Gebhart et al. [3]. However, the global value
in [3] for the total thermal convection is off by about
2 per cent which is probably due to either the mesh
size being too large or, more likely, to #, (the value of
n out to which the numerical integration is carried)
being too small. In particular, the results in [6],
accurate to five places, were obtained with a mesh size
of An ~ 00093 (in present notation) and #, ~ 27. In
contrast, the present numerical results were obtained
by numerically integrating in from 7, to # = 0, making
use of the asymptotic behavior of Fy and H, for large #.
This is a standard procedure which has been described
recently in the appendix of [7]. In particular, five-
place accuracy was obtained by this latter method
with Ay = 0-05 and n, = 8.

By truncating the series in (3.4) to two terms, it
follows that the neutral-stability curve (x;=0) is
given by

G = —az{Q)/o1;() 4.1
where the RHS has been tabulated in the last column
of Table 1. The resulting curve is shown in Fig. 1
together with contours of constant negative values of «;.

For comparison, the neutral-stability curve of
Haaland and Sparrow [ 7] has also been shown (dashed)
in Fig. 1. This latter result is based upon an extension
of the coupled Orr-Sommerfeld equations to include
the effects of §,0C/dy and 10,/0x in the disturbance
vorticity equation (and analogous terms in the energy
equation). However, as shown by the present analysis,
the terms #%,; 6f/0x and #8C,/dy are also of the same
order-of-magnitude, as are effects arising from the
algebraic x-dependence in { and the x-dependence of
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FiG. 1. Contours of constant values of o; vs G and
{for ¢ = 0-70). Dashed curve is neutral-stability contour of
Haaland and Sparrow [ 7].

o (for fixed physical frequency). Further discussion of
the numerical aspects of the stability analysis are given
in Appendix A, to which the interested reader is
referred.

Since the “critical” value of G in Fig. 1 is seen to
be = 7-3, it is to be suspected that effects arising from
the O(°3) terms in (2.1}-(2.2) may also be non-
negligible in this region of the stability plane. Although
the inclusion of these effects would complicate matters
unduly, it should be noted that b, is a function of the
heat-source Grashof number [Gr = gf(T,,— T,,) a’/v%,
a being the radius of source] and that (see Appendix B)
by = 0(1) as Gr— 0 and by = O(Gr¥/'?) as Gr - 0.
Hence, as Gr increases, the effect of the 0{s>3) terms
extends to larger x/A and therefore can be expected to
have an increased influence upon stability.

Unfortunately, a comparison of the present theory
with existing experimental results proves to be in-
decisive. Some of the major points to be noted in this
regard are indicated below.

The experimental resuits of Brodowicz and Kierkus
1], Forstrom and Sparrow [2] and Schorr and
Gebhart [4] show that the centerline temperature does
vary as x~3° in agreement with the zeroth-order
plumé theory, but that the magnitude of the tem-
perature is systematically about 15 per cent below the
predicted value. Although the negative value of H,((}
in (2.8) indicates a correction in the right direction, this
effect should become negligible with increasing x/4,
which is not borne out by the data.

Perhaps the most characteristic property of the
experimental investigations is a slow meandering
motion. In fact, despite attempts in [2] at eliminating
this effect by isolating the system, the effect was still
evident. Unfortunately, as has been suggested by Fujii
et al, 6], the linear stability theory does not describe
this meandering, the observed frequencies being much
smaller than theory would indicate. For example, the
periodic temperature variations shown in the upper
graph of Fig. 5 in [2] correspond to G ~ 10 and
O~ 144 x 1073 whereas, according to Fig. 1 of the
present paper, one would expect Q to be larger by a
factor of almost 100. This inadequacy of the stability
theory suggests the presence of an additional effect
which has not been accounted for. In particular, the
fact that the meandering has been observed at such
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small G suggests that the triggering mechanism may
actually occur in the vicinity of the wire. On the other
hand, it should be noted that the introduction of con-
trolled oscillations by Pera and Gebhart [5] has shown
that the linear stability theory does indeed describe the
response of the plume to disturbances in the frequency
range of O(U/d).

The concept of a virtual displacement in the location
ofthe line heat source has been considered by Forstrom
and Sparrow [2] and by Schorr and Gebhart [4]. In
both investigations, the virtnal-source location was
determined experimentally by a method which im-
plicitly assumnes that the displacement effect is the only
correction to the zeroth-order flow. According to the
present analysis, however, the leading correction
(Fy and H,) is due to the interaction between the
plume and the external irrotational flow region, the |
virtnal-source effect first appearing in the terms of
0% in {(2.1-(2.2). The relationship of b, to the
virtual displacement can be demonstrated by merely
replacing “x” by “x—xo” in the quantities USFy(n)
and AT Hy(y) and expanding these expressions for small
values of xq/x (noting the explicit x-dependence of U,
8, # and AT); the first fwo terms in the resulting
expansions correspond to the first and third terms in
(2.1)-(2.2) provided x,/4 is replaced by b,. That is,
b, A can be interpreted as the virtual location of the
line source along the x axis. Hence, from the definition
of A and the results in Appendix B, it follows that xq
is proportional to @ '/% and independent of & if Gr « 1
but is linearly proportional to a and independent of Q
if Gr » 1. In order to determine b, or X, exactly, how-
ever, it would be required to determine the flow in the
vicinity of the wire; short of that, it appears that the
only means of obtaining b, would be by an exper-
imental determination of the x-dependence of the
centerline velocity or temperature in the region where
the higher-order corrections in (2.1) or (2.2} should be
discernible (i.e. ¢ = 0'1 or, equivalently, G < 10). Based
upon the difficulties encountered in the experimental
investigations to date, the possibility of obtaining such
accurate measurements seems rather remote.

Finally, the results of the present stability theory
have been shown in Fig. 2 in terms of contours of
constant amplification, where the latter is based upon
the exponential growth in the amplitude of a fixed-
frequency disturbance as it crosses the neutral curve

”
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F16. 2. Contours of constant values of exp(—3 {«,dG).
Dashed curve is trajectory of a constant-frequency dis-
turbance {o = $-70).
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and propagates downstream:

x dx G
A=exp|—| o~ )=exp| -3| «dG],
v 0 Gn

subscript n denoting values along the neutral curve.
The path of any such disturbance in the stability plane
is given by

Q= BG'?

where B is a numerical constant; in particular, the path
shown (dashed) in Fig. 2 corresponds to B = 0-028
which, based upon the property values of air, reduces to

(5w
s W/m

A typical end result of linear-stability analyses is the
establishment of an empirically based correlation
between the observed transition-to-turbulence and a
particular value of A,,. That is, for given classes of
flow it has been found that the “point” of turbulent
transition occurs at the value of Ud/v (=G, in the
present case) for which A,,,, has a certain value—e® for
forced-flow boundary layers [11], e'® for natural-
convection boundary layers along vertical surfaces
[12]. Although the establishment of such a correlation
for the present case is precluded by a paucity of
transition data, it might be noted that Forstrom and
Sparrow [2] identified the first appearance of turbulent
bursts with G ~ 50 (which, from Fig. 2, corresponds
t0 Apax = €°) and the establishment of “fully” turbulent
flow with G x 80 (corresponding t0 A, ~ €'°).
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APPENDIX A
Some Numerical Aspects of the Stability Analysis
It is noted that the asymptotic behavior of ¢, and ¢, for
large # is given by

¢y ~e (A1)
and
$2 ~ (Bo+Pan+Ban?e™ ™" (A2)

where f; and §,, arising from the limiting behavior of the
inhomogeneous terms in (3.14), are given by

ity _(§i11+%iy+2ﬁz—2a1a2)

ﬂlz'_—9 Bl

20y (A3)
and where B, = 0 (i.e. the disturbance field has been normal-
ized by defining the coefficient of the e ™*'" term in ¢ to be
identically one). A plot of the absolute value of ¢}, ¢,
—ioty ¢y and 3y —2y —iwy @y —iay ¢y) vs 1 is shown in
Fig. 3 for Q = 0-10. In particular, the peaks exhibited by the
second-order terms are associated with the “critical layer”,
i.e. the region in the vicinity of the point where Fyp(y) = ¢,
(in the complex #-plane); e.g. for the case of Q = 0-10,
¢y = Qfuy ~ 0-3124+0-137i whereas Fy(n) = 0-312 at n~
273. Based upon similar print-outs at Q = 0-04 and 0-20,
it is noted that, with increasing Q, the peak in the second-
order terms becomes larger and moves towards the centerline
while the first-order terms actually diminish in magnitude
(in the framework of the above normalization).

For comparison, it is noted that the previous stability
analyses of the plume, [S] and [7], have represented the
disturbance field by

¢ =0, +B,®,+ B, 0,
0=0,+B,0,+B,0,

where each (®@;, ©;) is an integral of the coupled Orr—
Sommerfeld equations (of “extended” form, in [7]), j =1
corresponding to the inviscid limit and j = 2,3 being char-
acterized by viscous effects. However, as pointed out by
Lin [10], in such cases as the plume in which no solid walls
are present, B, and B; must be identically zero since @,
and @j are such that if they vanish as # - cc then they are
unbounded as # - —co. That B, and B; were found to be
non-zero in [5] and [7] is attributed to the fact that the
numerical procedure of determining ®, from the full Orr-
Sommerfeld equations introduces multiples of ®, and ®;.
Hence, unless a purification scheme such as that of Kaplan
[13] is employed, B, and B; will have to be non-zero in
order to cancel the spurious ®, and ®; behavior in the
numerically determined ®,. The point to be noted then is
that @, and ®; are, in fact, not present in the plume case
and that, in leading approximation (i.e. for large G, as has
been assumed throughout), the disturbance field is char-
acterized by the inviscid equation, (3.13). Seen in this light,
the “bottling” concept in [7] seems somewhat ill-founded
although it is interesting to note that, based upon (A1) and
(A2), the asymptotic behavior of the O(U/(ex)) and O(U/x)
terms in (3.10) vanish identically, indicating that the dis-
turbance vorticity does indeed decay more rapidly than that
of the base flow. On the other hand, it is seen from Fig. 3
that the disturbance velocity decays slowly howbeit more
rapidly than the base-flow velocity since the latter ap-
proaches non-zero values as it merges with the irrotational
flow outside.

(A4)
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In passing, it might be poted that a stability analysis
similar to the present one can presumably also be applied
¢.g. to the natural-convection boundary layer on a vertical
piate. In that case, &, and ®; will be required in order to
satisfy the non-slip and thermal condition at the wall
However, as indicated in [12], the effects of { ), and ( )3
will be confined to the region # = O(G™"?). Hence, although
the limiting equations in the region 7 = O{1} will be the
same as in the present case, the boundary conditions at
=0 will be replaced by matching conditions with a
predominantly viscons inner layer.

APPENDIX B
Behavior of by for Limiting Values of Gr

{) Gr«t

This limiting case was analyzed and solved approximately
in the classic paper by Mahony [14]. An exact solution to
the flow around the cylinder would require solving the full
governing equations {subject to the Boussinesq approxi-
mation) in the outer region. To the authors’ knowledge,
this has not been done yet although it may now be within
the capability of present-day computers. The following
gualitative treatment is based upon matched-asymptotic-
expansion considerations.

Inthe regionr = O(g), the temperature feld is conduction-
dominated with

T~ Ty 008, AT), & = {B1)
log a
where AT = T~ T,. In the “outer” region, where
173
r=0(f-), azs( o ) . @
£y i

log-—-
& Gr

thermal convection and conduction are of the same order-of-
magnitude with inertial, viscous and buoyant effects being
comparable in the momentum equation. This results in

T~Ty +{3(31£—T}, v} = Q(S; §>. (B3

C. A. Hieeer and E. }. Nass

Beyond the outer rogion, ie. for r > Q{a/e,), the flow is
characterized by an irrotational flow within which is em-
bedded a thin rotational region along the vertical axis
{the plume).

In order to show that the plume structure of Section 2
merges with the outer region, it must first be noted that
{B1) implies

0 = O, kAT (B4)
Hence,
AT = % = 0(6,AT) (B5)
and
. vl 173 a
i=(ar) =o(l) o
Therefore, .
v /x\V3 v (x\!
and
~ A ¥s i — j’ 35
AT = AT(») = 0{&‘1 AT(—) } (B8)
X X,

from which it follows that U = O(gy v/u) and AT = O(e, AT)
if x = O(1) = O(a/s;). That is, the plume structure does
merge with the outer region described by (B2) and {B3).
Since the indeterminacy in (2.1)-{2.2) arises from the flow
behavior in the vicinity of the heat source, it follows that
by e¥* should become of O(1) as the outer region is ap-
proached from the plume region, i.e. as x decreases to O{a/e;).
But if x = O(a/e;) then e = O(1), implying that b, = O(1).

(i) Gr» 1

in this limit, it is well known that the flow in the vicinily
of the cylinder is characierized by a boundary layer, of (3}
in thickness, where

a v
51 = E;m, ‘V' = O(; G?‘I,z) . (Bg)
From &, it then follows that
Q = OEATGr). {B10)
Hence,
~ _ " a .
AT = O{ATGr'®), J= 0(&;3717) (B

from which it follows that

v X\ 1% AN
v-oftorn(t)"} ar-ofsrars(l)". min
la A x

Therefore, when x = Ofa), it follows from (B1 1) and (B12) that

U= o(ﬁ Gr‘”), AT = O(AT) (B13)

which is seen to agree with the behavior in the boundary
layer surrounding the cylinder.

In this case, we expect ;2% to be 01} where x = O{a),
hence 5% = A/x = O(Gr~%'3). Therefore, b, = O(Gr¥/1?),

CONVECTION NATURELLE AU DESSUS D'UNE SOURCE LINEIQUE DE CHALEUR:
EFFETS D'ORDRE SUPERIEUR ET STABILITE

Résumé--Le sillage de convection naturelle au dessus d’une source lindique horizontale de chaleur est
étudié a l'aide de la théorie de la couche limite & un ordre d’approximation supérieur. Une étude de
stabilite de I'écoulement de base obtenu est effectuée 2 I'aide d’un développement systématique du champ
de perturbation. La comparaison de la théorie avec Ies résultats expérimentaux existants est peu concluante.



Natural convection above a line heat source

DIE NATURLICHE KONVEKTION UBER EINER LINIENFORMIGEN W_:&RMEQUELLE:
AUSWIRKUNGEN HOHERER ORDNUNG UND STABILITAT

Zusammenfassung — Die freie Konvektionsstromung liber einer horizontalen, linienférmigen Warmequelle

wird nach Gliedern héherer Ordnung der Grenzschichttheorie untersucht. Eine Stabilitdtsanalyse mittels

einer systematischen Erweiterung fiir das Storfeld wird dann fiir die resultierende Grundstrémung

durchgefiihrt. Ein Vergleich der Theorie mit den vorhandenen experimentellen Ergebnissen ist nicht
beweiskraftig.

ECTECTBEHHASI KOHBEKLIiS HAJZl JIUHENHBIM UCTOYHUKOM TEILIA:
3®PEKTHI BBICIIETO MOPAAKA U YCTOTYHUBOCTh

ANHOTAINS — AHAJIH3UPYETCA €CTECTBEHHAs KOHBEKILHA Hal I'OPH3OHTAJIBHBIM JIMHCHHBIM HCTOY-

HHKOM TeIUIa B 4YJICHaX BBICIIErO NOPAIKa TCOPHH MOTrPAaHUMHOTO CMOs. 3aTEM, C HOMOIIBIO CHCTEMa-

THYECKOTO PA3JI0KEHHS MOJIA BO3MYLIEHHH MPOBOAUTCH AHAIK3 YCTOMUYMBOCTH OCHOBHOTO TEYCHHSA.

ITpoBeneHHOe cpaBHEHHE TEOPETHYECKHX AAHHBIX C HMEIOMMMUCH IKCHEPHMEHTABHEIMHA Pe3yIib-
TaTaMH He ABJISETCH NOKA3aTEIbHBIM.
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