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Abstract-The natural-convection plume above a horizontal line heat source is analyzed in terms of 
higher-order boundary-layer theory. A stability analysis of the resulting base flow is then performed by 
means of a systematic expansion for the disturbance field. Comparison of the theory with existing 

experimental results is found to be inconclusive. 

NOMENCLATURE 

radius of source; 
numerical constant appearing in (2.1)-(2.2); 
= n/CC; 
gravitational acceleration 
(directed along negative x-axis); 
= (x/1)3’5 = U6/v = l/E; 
Grashof number of heat source, 
= gfi(T,- T,)a’/v’; 

thermal conductivity of fluid; 
strength of heat source [W/m]; 
radial coordinate measured from center of 
source; 
time; 
temperature; 
temperature of source; 
ambient fluid temperature; 
x-component of velocity; 
characteristic vertical velocity in plume, 
z (v/L)(x/d)l’5; 
y-component of velocity; 
vertical coordinate measured from center of 
source; 
horizontal coordinate measured from center 
of source. 

Greek symbols 

a, = G(dA/dx); 

P, coefficient of thermal expansion; 

Y, = R(dcrl/dn); 

6, characteristic thickness of plume, 
z L(x/L)2’5 ; 

AT characteristic temperature difference across 

A?, 
plume, E A?(~/x)~“; 
= Q/k; 

6, = 6/x z (d/x)3” ; 

L vorticity ; 

tl, similarity variable, = y/6; 
8, defined in (3.1); 

= (v2/(gpAT))1’3; 
defined in (3.1); 
angular polar coordinate measured from 
positive x-axis; 
kinematic viscosity; 
Prandtl number; 
defined in (3.1); 
streamfunction; 
frequency of disturbance; 
= WSJU. 

1. INTRODUCTION 

THE CLASSIC problem of laminar, natural-convection 
flow above a horizontal line heat source has received 
considerable attention in recent years ([l]-[7]) and 
has also been the “source” of some controversy. 

In this paper, the zeroth-order plume structure of 
earlier investigations is extended (Section 2) to include: 
(i) the first-order correction arising from an interaction 
between the plume and the irrotational flow outside; 
(ii) the second-order correction (determinate to within 
a multiplicative constant) associated with a virtual dis- 
placement of the heat source. The stability of the 
laminar flow is then investigated (Section 3) by means 
of a systematic expansion which enables incorporating 
the effects of(i) above, together with other comparable 
effects which have been omitted in previous investi- 
gations. Discussion and comparison with earlier work 
is given in Section 4. 

2. BOUNDARY-LAYER EXPANSION 

In a manner completely analogous to that 
it can be shown that the leading-order terms 
streamfunction and temperature in the region 

y = O(6), x > o(n) 

are given by 

Y = U6{Fo(?)+EFl(tl)+E5’3bl~1(~)+O(E2)} 

in PI, 
for the 

(2.1) 
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T = ‘Zl, +AT{H&)+EHI(III~ 3. STABILITY ANALYSIS 

+&5’3b, 01 (r/) f O(E2)} (2.2) Following a standard procedure in linear stability 

where the governing equations for Fe and He are theory (see Lin [lo]), we superimpose upon the above 

given by “base” flow an arbitrarily small disturbance of the form: 

F;;'++F,F;;-&Fb= --IS, 1 9 = u~~(~~ei(A(x)-~~r) + G.C. 

Hb+:rJFJi*=O 

F,(O)= 0 = F;;(O) = Fgco), 

s 

ny 

0 
FOHodq = & 

I 

i+ = A~~(~)ej~A(~)-[~r~ + c.c, I 
(3.1) 

(2.3) where “cc.” denotes “complex conjugate” and 4, 6 and 
A are complex whereas the frequency, w, is assumed 
to be real. Since the base flow is known in terms of 
an expansion in E, it is appropriate to express the 

and F 1 and H, are governed by:* disturbance quantities in a similar manner, namely: 
\ 

F;"+~FoF;+fFbF',= -H, Q, = 41(rl)+42o?f+... 

H;C~~FoH;+~~F~H1 = -~~F'~Ho 
(2.4) 

e= Bl(q)+E0&)+.*. (3.2) 

F,(O)= 0= F;(O)= H;(O)= H,(a), A = A,(X)f&&(X)S... 

where 

Ao=Fo(cc), K_:cot$. (2.5) 

In addition, 

% = :rlFb -fFo, O1 = &-Hb-&f~. (2.6) 

That is, F. and Ho are driven by the integral con- 
dition in (2.3), which is a non-dimensional represen- 
tation of the fact that the heat dissipated by the line 
source gets convected entirely by the plume. On the 
other hand, F1 and H1 arise from the inhomogeneous 
condition in (2.4) which represents a matching with 
the leading-order vertical velocity component of the 
irrotational flow outside, described by 

3/5sin&n-~) 
__- 0 <p < 2n, r > O(1). (2.7) 

sin+z ’ 

This latter result, in turn, is driven by the influx velocity 
associated with Fo. Lastly, following Stewartson [9], 
@r and Or form the leading eigenfunction associated 
with the present boundary-layer expansion and can be 
interpreted physically as representing an apparent shift 
in the location of the heat source (to x = b,l: see 
Section 4) as seen by the plume region. 

whereas w will be assumed given (i.e. consideration is 
being given to the response of the steady laminar flow 
to perturbations of various prescribed frequency). 
Additional quantities which will be employed below 
are the non-dimensional frequency, complex wave- 
number and complex wavespeed, given respectively by: 

dh 
&ES-==C(1+&C(2+..., 

dx 

s1 
c=-=cc,+&C2+... 

a 

The vorticity and energy equations, linearized in 
terms of disturbance quantities, are given by: 

(3.7) 

Numerical integration ofthe above for (r = O-70 gives 
the following values: where the bar denotes the base-flow quantities of 

FL(O)= 0.93273, H,(O)= 0.49654, 7 
Section 2. In particular, 

Fo(co) = 2.21121 

F;(O) = 0.09969, H, (0) = - O-25111 i 
(2.8) ii=%= v((n;+&~*+...)ei(A-f~f)+c.c. 

aY 
(3.8) 

F,(q) _ tcA,q--0.38089 as 9 + co. i atk 
In particular, unlike the isothermal vertical-plate 

;==-z 

case, H, is non-zero. Indeed, this is necessary since the = u(-icr,(61+&(~s~;-:~1-icl*rpl 
global energy-rate balance requires that -icc,~2)+...}ei(A-O’)+c.c. (3.9) 

i 
‘=(F’,H,+F;H,))d?=O, (2.9) ,__!V!! 

.0 ‘-ax ap 
which can be shown to be automatically satisfied by 
the solution of (2.4). =~~(~:#~-~:)-t&(~ia,~~~-4ia!~l+2~,~~~, 

*It has been brought to the authors’ attention by H. +a:~$~-+$~ -&)+...}ei(A-w’) +C.C (3.10) 
Shaukatullah of Cornell University that the problem for 
F, and HI has recently been solved by N. Riley, Z. Angew. where 
Matk. Phys. 25, 817-828 (1974). 

(3.11) 
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arises from &,/ax and the property that a1 depends 
only upon Q being the eigenvalue of the inviscid 
problem [defined by equations (3.13) and (3.18) below]; 
i.e. 

aal daraR darlQ y 

ax dQ ax d05x 5x’ 
(3.12) 

R being proportional to x1” for fixed o. 
Carrying out the operations in (3.6) and ordering 

terms in powers of E results in the following equations 
for the leading and next-order groupings {of order 
U2 $/?I2 and .sU2 4/S2, respectively}: 

Mr) = &(Fb--crMY--ai&) 
-iarF’d’4r = 0 (3.13) 

and 
q42) = go +a292 (3.14) 

where 
pi = ~;“‘-2a~~~+a~qbl+8; 

-ialF;(~‘;-a:~l)+h,F;“Q,, 

-4a:rlFb~;+:a:Fb~,+3a,YFb~1+fFbcb’; 

+f~;Fg-:a:Fo~~+3Fo~~’ (3.15) 

++%‘&I +ci(M~~~ -4a:~r -fury&), 

92 = -2ia~cl~,+3h~Fb~1 

-iFb+;+iF;‘4, (3.16) 

and, from the leading terms in (3.7), 

01 = Hb&/(Fb-cl) (3.17) 
Appropriate conditions on the above are that the 

disturbances vanish at the edge of the plume and that ti 
be asymmetric with respect to the centerline, this mode 
having been found to be less stable than the symmetric 
case (see Pera and Gebhart [5]). Hence, 

d;(O) = 0 = 4j(oO), all j. (3.18) 

Since the homogeneous problem for c& is identical 
to that for #or, it is required that 

s 

m 
(9r+a2g2)Xdq = 0 (3.19) 

0 

where x is a non-trivial solution of the adjoint homo- 
geneous problem : 

(Fo-c1)(X”-a:X)+2FiX’ = 0 

x’(0) = 0 = x(co). 1 
(3.20) 

Hence, the procedure for determining al and a2 is 
as follows. For a given Q equations (3.13) and (3.18) 
are solved for a1 and 4r(q) [note: cr = Q/al]. With 
al known, x is determined from (3.20). In addition, 
&” and &“’ are obtained by successive differentiation 
of (3.13) whereas Q’t is similarly derived from (3.17). 
Lastly, y is obtained from knowing a,(Q) at neighboring 
values of R, namely, 

yzn 
ai(R+AQ)-al@--AR) 

2AR 
(3.21) 

where AR has been taken to be 0.02 in the results below. 
Hence, with x, Fr and F2 known, a2 is obtained from 
(3.19); i.e. 

Again limiting attention to 0 = @70, resulting values 
of a1 and a2 at various 0 are shown in Table 1. Based 
upon these values, the neutral-stability and amplifi- 
cation contours can be constructed. These are shown 
later in Section 4. 

Table 1. Values of a,, u2 and -ali/ali vs Q 

n at 

0.02 0.0609 - 0.058Oi 
0.04 0.1150-0.08841’ 
0.06 @1693-01069i 
0.08 0.2213-011581’ 
0.10 0.2693-0.1181i 
0.12 0.3130-0.1162i 
0.14 0.3529-0.112Oi 
0.16 0.3897 - @1064i 
0.18 0.4238 - O.lOOOi 
0.20 0.4558 - 0.09331’ 
0.24 O-5147-0.07941’ 
0.28 0.5685 -0.06571’ 
0.32 0.6187 - 0.05251 

C2 -Mati 

-0.033f0.7791’ 13.42 
-0.078+0.813i 9.20 
-0.123+0.842i 7.88 
-0.165+0.8561 7.40 
- 0.198 + 0.86Oi 7.26 
-0.223+0.861i 7.41 
-0.242+@8631’ 7.70 
-0.258 + 0.8661 8.14 
- 0.271+ 0.87Oi 8.70 
-0.282+0.8751‘ 9.38 
-0.300+0.8881 11.19 
-0.316+0.904i 13.75 
- 0.329 + 0.9251 17.62 

4. DISCUSSION 

A comparison of the present numerical results 
(0 = 0.70) for F. and Ho indicates agreement with 
those of Fujii et al. [6] and also with the centerline 
value of Gebhart et al. [3]. However, the global value 
in [3] for the total thermal convection is off by about 
2 per cent which is probably due to either the mesh 
size being too large or, more likely, to qe (the value of 
n out to which the numerical integration is carried) 
being too small. In particular, the results in [6], 
accurate to five places, were obtained with a mesh size 
of An N OX)093 (in present notation) and qe 3: 27. In 
contrast, the present numerical results were obtained 
by numerically integrating in from qe to q = 0, making 
use of the asymptotic behavior of F. and Ho for large n. 
This is a standard procedure which has been described 
recently in the appendix of [7]. In particular, five- 
place accuracy was obtained by this latter method 
with 81 = 0.05 and q, = 8. 

By truncating the series in (3.4) to two terms, it 
follows that the neutral-stability curve (ai = 0) is 
given by 

(4.1) 

where the RHS has been tabulated in the last column 
of Table 1. The resulting curve is shown in Fig. 1 
together with contours of constant negative values of C(i. 

For comparison, the neutral-stability curve of 
Haaland and Sparrow [7] has also been shown (dashed) 
in Fig. 1. This latter result is based upon an extension 
of the coupled Orr-Sommerfeld equations to include 
the effects of ijo@/ay and tia[,jax in the disturbance 
vorticity equation (and analogous terms in the energy 
equation). However, as shown by the present analysis, 
the terms i&@/ax and ZJ[,/ay are also of the same 
order-of-magnitude, as are effects arising from the 
algebraic x-dependence in [ and the x-dependence of 
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FtG. 1. Contours of constant values of c(~ vs G and i;2. 
(for D = 0.70). Dashed curve is neutraistability contour of 

Kaaland and Sparrow [7]. 

c1 (for fixed physical frequency). Further discussion of 
the numerical aspects of the stability analysis are given 
in Appendix A, to which the interested reader is 
referred. 

Since the “critical’” value of G in Fig. 1 is seen to 
be w 7.3, it is to be suspected that effects arising from 
the O(E’~~) terms in (2.1)-(2.2) may also be non- 
negligible in this region of the stability plane. Although 
the inclusion of these effects would complicate matters 
unduly, it shoufd be noted that bl is a function of the 
heat-source Grashof number [Gr E eP(rW - T,) a3 jv’, 

a being the radius of source] and that (see Appendix B) 
bl = O(1) as Gr --f 0 and bl = 0(Gr5!“) as Gr + co. 
Hence, as Gr increases, the effect of the Q(?‘) terms 
extends to larger x/L and therefore can be expected to 
have an increased influence upon stability. 

Unfortunately, a comparison of the present theory 
with existing experimental results proves to be in- 
decisive. Some of the major points to be noted in this 
regard are indicated below. 

The experimental resuks of Brodowicz and Kierkus 
fl], Forstrom and Sparrow [2] and Schorr and 
Gebhart [4] show that the centerline temperature does 
vary as x -3is, in agreement with the zeroth-order 
plum4 theory, but that the magnitude of the tem- 
perature is systematically about 15 per cent below the 
predicted value. Although the negative value of H, (0) 
in (2.8) indicates a correction in the right direction, this 
effect should become negligible with increasing x/i, 
which is not borne out by the data. 

Perhaps the most characteristic property of the 
experimental investigations is a slow meandering 
motion. In fact, despite attempts in [2f at eliminating 
this effect by isolating the system, the effect was stiff 
evident. Unfortunately, as has been suggested by Fujii 
et al. [6], the linear stability theory does not describe 
this meandering, the observed frequencies being much 
smaller than theory would indicate. For example, the 
periodic temperature variations shown in the upper 
graph of Fig. 5 in [Z] correspond to G = IO and 
ft z I.4 x 1K3 whereas, according to Fig. f of the 
present paper, one would expect 51 to be iarger by a 
factor of almost 100. This inadequacy of the stability 
theory suggests the presence of an additional effect 
which has not been accounted for. In particular, the 
fact that the meandering has been observed at such 

small G suggests that the triggering mechanism may 
actually occur in the vicinity of the wire, On the other 
hand, it should be noted that the introduction of con- 
trolled oscillations by Pera and Gebhart f.5] has shown 
that the linear stability theory does indeed describe the 
response of the plume to disturbances in the frequency 
range of O(U/6). 

The concept of a virtual displacement, in the location 
of the line heat source has been considered by Forstrom 
and Sparrow [2] and by Schorr and Gebhart [4]. In 
both investigations, the virtual-source location was 
determined ex~r~euta~ly by a method which im- 
plicitly assumes that the displacement eifect is the only 
correction to the zeroth-order flow. According to the 
present analysis, however, the leading correction 
(F, and H,) is due to the interaction between the 
plume and the external irrotational flow region, the 
virtual-source effect first appearing in the terms of 
O(E*‘~) in (2.13-(2.2). The relationship of b1 to the 
virtual displacement can be demonstrated by merely 
replacing “x” by “x:-x0” in the quantities USFo(v) 
alnd A TH,(q) and expanding these expressions for small 
values of x0/x (noting the explicit x-dependence of ZJ, 
6, q and AT); the first two terms in the resulting 
expansions correspond to the first and third terms in 
(2.1)-(2.2) provided x0/l is repfaced by b,. That is, 
bll+ can be interpreted as the virtual location of the 
line source along the x axis. Hence, from the definition 
ofk and the results in Appendix B, it follows that x0 
is proportional to Q-“” and inde~ndent of a if Gr cc I 

but is &early proportional to a and independent of Q 
if Gr >> I. In order to determine b1 or ,x0 exactly, how- 
ever, it would be required to determine the flow in the 
vicinity of the wire: short of that, it appears that the 
only means of obtaiuing bl would be by an exper- 
imental dete~i~tion of the x-dependence of the 
centerline velocity or temperature in the region where 
the higher-order corrections in (2.1) or (2.2) should be 
discernible (i.e. c 2 031 or, equivalently, G 6 10). Based 
upon the difficulties encountered in the experimental 
investigations to date, the possibility of obtaining such 
accurate measurements seems rather remote. 

Finatiy, the results of the present stability theory 
have been shown in Fig. 2 in terms of contours of 
constant amplification, where the latter is based upon 
the exponential growth in the amplitude of a fixed- 
frequency disturbance as it crosses the neutral curve 

FE. 2. Contours of constant values of exp(-$$aidC), 
Dashed curve is trajectory of a constant-frequency dis- 

turbance fcr = 070). 
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and propagates downstream: 

subscript n denoting values along the neutral curve. 
The path of any such disturbance in the stability plane 
is given by 

where B is a numerical constant; in particular, the path 
shown (dashed) in Fig. 2 corresponds to B = 0.028 
which, based upon the property values of air, reduces to 

A typical end result of linear-stability analyses is the 
establishment of an empirically based correlation 
between the observed transition-to-turbulence and a 
particular value of A,,,. That is, for given classes of 
flow it has been found that the “point” of turbulent 
transition occurs at the value of U6/v (= G, in the 
present case) for which A,,, has a certain value-e’ for 
forced-flow boundary layers [ll], era for natural- 
convection boundary layers along vertical surfaces 
[ 121. Although the establishment of such a correlation 
for the present case is precluded by a paucity of 
transition data, it might be noted that Forstrom and 
Sparrow [2] identified the first appearance of turbulent 
bursts with G z 50 (which, from Fig. 2, corresponds 
to A,,, z e6) and the establishment of “fully” turbulent 
flow with G x 80 (corresponding to A,,, x el’). 
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APPENDIX A 

Some Numerical Aspects of the Stability Analysis 

It is noted that the asymptotic behavior of +i and & for 
large q is given by 

and 

f#~i _ e-“q (Al) 

+Z _ (B0+PirI+B2$)e-“~ (A2) 

where fll and fi2, arising from the limiting behavior of the 
inhomogeneous terms in (3.14), are given by 

82 = 5 B = (!&i+fiy+2P2--22d(iaz) 
5’ ’ 2x1 

(A3) 

and where j& = 0 (i.e. the disturbance field has been normal- 
ized by defining the coefficient of the e-“‘l term in 4 to be 
identically one). A plot of the absolute value of I#J;, &, 
-ialq51 and (5~~;-~~1-ia2~1-ia,~2) vs q is shown in 
Fig. 3 for 0 = 0.10. In particular, the peaks exhibited by the 
second-order terms are associated with the “critical layer”, 
i.e. the region in the vicinity of the point where Fb(q) = c, 
(in the complex q-plane); e.g. for the case of R = 0.10, 
ci = R/al N 0.312+0,137i whereas &(q) = 0,312 at ‘1 N 
2.73. Based upon similar print-outs at 51 = 0.04 and 0.20, 
it is noted that, with increasing R, the peak in the second- 
order terms becomes larger and moves towards the centerline 
while the first-order terms actually diminish in magnitude 
(in the framework of the above normalization). 

For comparison, it is noted that the previous stability 
analyses of the plume, [5] and [7], have represented the 
disturbance field by 

where each (@I, Oj) is an integral of the coupled Orr- 
Sommerfeld equations (of “extended” form, in [7]), j = 1 
corresponding to the inviscid limit and j = 2,3 being char- 
acterized by viscous effects. However, as pointed out by 
Lin [lo], in such cases as the plume in which no solid walls 
are present, B2 and B3 must be identically zero since $ 
and D3 are such that if they vanish as r) + cc then they are 
unbounded as r~ -+ -co. That Bz and B3 were found to be 
non-zero in [5] and [7] is attributed to the fact that the 
numerical procedure of determining Q1 from the full Orr- 
Sommerfeld equations introduces multiples of @)2 and ms. 
Hence, unless a purification scheme such as that of Kaplan 
[13] is employed, B2 and B3 will have to be non-zero in 
order to cancel the spurious (IQ and & behavior in the 
numerically determined Qi. The point to be noted then is 
that Q, and Qs are, in fact, not present in the plume case 
and that, in leading approximation (i.e. for large G, as has 
been assumed throughout), the disturbance field is char- 
acterized by the inviscid equation, (3.13). Seen in this light, 
the “bottling” concept in [7] seems somewhat ill-founded 
although it is interesting to note that, based upon (Al) and 
(A2), the asymptotic behavior of the O(U/(sx)) and O(Li/x) 
terms in (3.10) vanish identically, indicating that the dis- 
turbance vorticity does indeed decay more rapidly than that 
of the base flow. On the other hand, it is seen from Fig. 3 
that the disturbance velocity decays slowly howbeit more 
rapidly than the base-flow velocity since the latter ap- 
proaches non-zero values as it merges with the irrotational 
flow outside. 

Vol. 1X. No. 12- J 
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0,6 i 

Fro. 3. Profiles at R; -- 0.10 of the foliowing disturbance 
quantities: /&,I, --~--, I$;[, -; (--ic4r4,Jr -----; 

&J@r -$$I, -iolz+t -iM1 f&b -+--. (0 = 0.70). 

In passing, it might be noted that a stability analysis 
similar to the present one can presumably also be applied 
e.g. to the natura~~conve~tjou boundary layer on a vertical 
plate. In tkat case, Q)z and @a wiit be required in order to 
satisfy the non-slip and thermal condition at the wah. 
However, as indicated in [12], the effects of ( )2 and ( )3 
will be confined to the region rt = 0(G-“2). Hence. althouek 
the limiting equations &J the regidn q = O(l) &if be tke 
same as in the present case. the baundary conditions at 
q = 0 wiil be replaced by matching conditions with a 
predo~~~ant~~ viscous inner gayer. 

APPENDIX B 
Behavior qf bl fir Limiting Values of Gr 

(i) Gr << 1 
This fimiting case was am&red and soived approx~at~~~ 

in the eta&c paper by Mabony [14]. An exact solution to 
the flow around tke cylinder wouid require solving the full 
governing equations (subject to the Ba~~iuesq approxi- 
mation) in the outer region. To the authors’ knowledge, 
this has not been done yet although it may now be within 
the capability of present-day computers. The following 
qualitative treatment is based upon ~at~k~-as~rnpto~i~~ 
expansion considerations. 

In the region z = O(o), the t~~~ratu~a field is induction” 
dominated with 

1 
T- T,--O(E*ZiT), e, =------- 

log .$ 

where Z? = T, - T, . fn the “outer” region, wkere 

(Bl) 

thermal convection and conduction are of the same order-of- 
magnitude with inertial, viscous and buoyant effects being 
comparable in the momentum equation. This results in 

Beyond the outer region, i.e. for I z Qfq&), the fiow is 
characterized by aa irrotational flow within which is em- 
bedded a thin rotational region along the vertical axis 
(the plume). 

In order to show tknt the plume structure of Section 2 
merges with the outer region, it must first be noted that 
(BI) implies 

Q = Ojs, km). (B4) 
Hence, 

and 

Therefore. 

and 

from which it follows that U = 0(&a v/a) and AT = O(e, ilT_i;) 
if x = O(A) = O(&). That is, the plume structure does 
merge with the outer region described by (B2) and (B?). 

Since the ~~et~~ina~~ in 12.iH2.21 arises from the gow 
behavior in tke vicinity bf the keat sdurce, it Wows that 
hr~s~~ should become of O(l) as the outer region is ap- 
proached from tke plume region, i.e. as xdecreases to Ofa/& 
But if x = O(a/sz) then e = O(l), implying that 6, = O(1). 

(5) Gr >> I 
Xn this limit, it is w&i known that the Row in the vicinity 

oftke cylinder is characterized by a boundary layer, of G&) 
in thickness, where 

From 6, it then foliows that 

Q = O(kmGrif4). 

Hence, 

from which it follows that 

Therefore, rvhen x = U(o), itfo~lowsfro~ (311) and~i2)~at 

wkick is seen to agree with the behavior in the boundary 
layer surrounding the cylinder. 

In this case, we expect bl E S/3 
kence &= = a/& = O(Gr_ 

to be ofif where x = O(a)* 
5’fz). Therefore, bl = 0(Grr~r2). 

CU~~~~~~ ~~TUR~~~~ AU DESSUS D’UNE SOURCE LINE.I@JE DE CHALEUR: 
EFFETS D’ORDRE SUPERI~UR ET STABILITE 

R6sumC-Le sillage de convection naturelle au dessus dune source lineique horizontale de ckaleur est 
&die B l’aide de la tkborie de la coucke Iimite a un ordre d’approximation superieur. Une etude de 
stabikte de ~~~u~e~en~ de base obtenu est effe&&e & p&de d’un d~veiop~~ent s~s~~rnat~qu~ du champ 
de perturbation, La comparaison de la tkeorie avec les r&sulltats experimentaux existants est peu con&ante. 
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Zusammenfassung-Die freie Konvektionsstriimung iiber einer horizontalen, linienformigen Warmequelle 
wird nach Gliedern hiiherer Ordnung der Grenzschichttheorie untersucht. Eine Stabilitatsanalyse mittels 
einer systematischen Erweiterung fur das Stijrfeld wird dann fiir die resultierende Grundstromung 
durchgefiihrt. Ein Vergleich der Theorie mit den vorhandenen experimentellen Ergebnissen ist nicht 

beweiskraftig. 

ECTECTBEHHAR KOHBEKLJMR I-IA,JJ JIklHElirHbIM PICTOYHHKOM TEITJIA: 
30’DEKTbI BbICIIIEI’O I-IOPIIAKA M YCTO@IklBOCTb 

hHOlWWl--haIIH3HpyeTcK eCTeCTBeHHWl KOHBeKIWl H&JJ I'OpE30HTWIbHhIM JlAHetiHblM HCTOY- 

~i~Ko~Te~~naB=ineHax Bblcmero nopnAKa~eop~sfnorpaH~orocnor.3aTe~,cno~o~~cHcTeh4a- 
TH'IeCKOrO pa3J'IO~eHHSl IIOJIR B03MyIAeHH~I-fpOBoAHTCIlWlJIH3yCTO&5iBoCTHOCHOBHOrO Te'leHRII. 

npOBeAeHHOe CpaBHeHHe TeOpeTFIeCKHXAaHHbIX CHMeIoIQEhiHCII 3KClTepHMeHT pe3yJlb- 

TaTaMHHeIIBJIKeTCII AOKa3aTaHbIM. 


